Code Implementations
This page is dedicated to showcase various implementation of Deepseek into Polaris' Architecture. The full code will be available via our open-source release.
Part 1: Initialization and Configurations
import {
PolarisAgent,
PolarisModel,
PolarisOptimizer,
DeepSeekClient,
PolarisStreamHandler,
} from "https://deno.land/x/polarisai/mod.ts";
// Master configuration object
const config = {
auth: {
rpcUrl: "https://api.deepseek.ai/polaris",
authToken: "Bearer dkf3H84Jd9@Plr",
deepSeekKey: "DEEPSEEK-ACCESS-XYZ-123",
},
inference: {
model: "polaris-ai/polaris-85b-v2",
device: "gpu",
precision: "fp16",
maxThreads: 32,
},
generationConfig: {
temperature: 0.7,
topP: 0.9,
maxTokens: 200,
stopSequences: ["User:", "Assistant:"],
},
dependencies: {
enable: true,
allowCycles: false,
dependencyDepth: 4,
},
variableWeights: {
inputImportance: 1.25,
outputScaling: 0.85,
biasAdjustment: 0.03,
},
rules: {
"strict-mode": "enable",
"allow-sensitive": false,
"retry-attempts": 5,
},
};
console.log("Polaris Config Loaded:", JSON.stringify(config, null, 2));
// Initialize the PolarisAgent
const polarisAgent = new PolarisAgent({
rpcUrl: config.auth.rpcUrl,
authToken: config.auth.authToken,
model: config.inference.model,
rules: config.rules,
maxThreads: config.inference.maxThreads,
});
Part 2: Loading Models, Tokenizer, and Dependency Management
// Step 1: Load the tokenizer and pre-processors
const tokenizer = await PolarisModel.loadTokenizer(config.inference.model);
console.log("Tokenizer Loaded");
// Step 2: Load the inference model with dependency constraints
const model = await PolarisModel.load(config.inference.model, {
device: config.inference.device,
precision: config.inference.precision,
dependencyManagement: config.dependencies.enable,
dependencyDepth: config.dependencies.dependencyDepth,
});
console.log("Model Loaded");
// Step 3: Dependency validation
if (config.dependencies.allowCycles) {
console.warn("Warning: Cyclic dependencies are allowed!");
} else {
console.log("Dependency cycles are restricted.");
}
Part 3: Variable Weightage and Bias Calculations
// Utility function to calculate variable weightage dynamically
function calculateWeightage(variable: string, baseValue: number): number {
const bias = config.variableWeights.biasAdjustment;
const scaling = config.variableWeights.outputScaling;
const importance = config.variableWeights.inputImportance;
return baseValue * importance * scaling + bias;
}
// Example variable calculations
const weights = {
inputTensor: calculateWeightage("inputTensor", 1.5),
outputTensor: calculateWeightage("outputTensor", 2.1),
};
console.log("Variable Weights Calculated:", weights);
// Apply weights to inference pipeline
const weightedInferenceConfig = {
temperature: config.generationConfig.temperature * weights.inputTensor,
topP: config.generationConfig.topP * weights.outputTensor,
maxTokens: config.generationConfig.maxTokens,
stopSequences: config.generationConfig.stopSequences,
};
console.log("Weighted Inference Config:", JSON.stringify(weightedInferenceConfig, null, 2));
Part 4: Inference Execution and Streaming
// Message inputs
const messages = [
{ role: "user", content: "Explain the theory of relativity in simple terms." },
{ role: "system", content: "You are an advanced PolarisAI assistant." },
];
// Create the input tensor
const inputTensor = tokenizer.applyChatTemplate(messages, {
addGenerationPrompt: true,
returnTensors: "pt",
});
console.log("Input Tensor Created");
// Stream handler for real-time updates
const streamHandler = new PolarisStreamHandler({
onMessage: (chunk: Uint8Array) => {
console.log("Streaming Data:", new TextDecoder().decode(chunk));
},
onError: (error: Error) => {
console.error("Stream Error:", error.message);
},
});
// Execute inference with streaming enabled
const outputs = await model.generate(inputTensor.to(model.device), {
...weightedInferenceConfig,
enableStream: true,
streamHandler,
});
// Decode the output
const decodedOutput = tokenizer.detokenize(outputs.tokens);
console.log("Decoded Output:", decodedOutput);
Part 5: Integration with DeepSeek and Post-Inference Analysis
// Initialize DeepSeek client for post-inference analysis
const deepSeekClient = new DeepSeekClient({
apiKey: config.auth.deepSeekKey,
endpoint: "https://api.deepseek.ai/v1/analyze",
filters: ["toxicity", "bias", "redundancy"],
debug: true,
});
// Analyze the generated output
const analysisResult = await deepSeekClient.analyze(outputs.tokens, {
filters: ["bias", "toxicity"],
contextValidation: true,
confidenceThreshold: 0.95,
});
console.log("DeepSeek Analysis Result:", JSON.stringify(analysisResult, null, 2));
// Save runtime stats
await PolarisAgent.saveRuntimeStats("runtime-stats.json", {
latency: 20.3,
throughput: 2048,
gpuUsage: 78.5,
variableWeights: weights,
});
console.log("Runtime Stats Saved");
Last updated